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Abstract

This technical note describes an algorithm used to prove knowledge of the same discrete logarithm

across different groups. The scheme expresses the common value as a scalar representation of bits, and

uses a set of ring signatures to prove each bit is a valid value that is the same (up to an equivalence)

across both scalar groups.

1 Notation

We use the shorthand notation Zn to mean the group Z/nZ. Let G and H be prime-order groups where the

discrete logarithm problem is assumed to be hard: for example, secp256k1 or the l-subgroup of curve25519.

Let G,G′ ∈ G and H,H ′ ∈ H be generators of their respective groups. Suppose |G| = p and |H| = q. Let

HG : {0, 1}∗ → Zp and HH : {0, 1}∗ → Zq be cryptographic hash functions.

Without loss of generality, assume p ≤ q. Choose x ∈ Z such that 0 ≤ x < p. By considering the natural

projections Z→ Zp and Z→ Zq with this domain restriction, there is a bijection between elements of Zp and

the restriction of Zq. Given this, we wish to prove that, given only the values xG′ and xH ′ (and other proof

elements as needed), the discrete logarithm of each is a representation of the same integer. In particular, we

do not wish to reveal x to the verifier.

Since there is no meaningful map assumed between the two groups, our approach is to decompose x into

bits, treating each bit as a scalar in both Zp and Zq using our equivalence, and generate commitments to

each bit in both groups. For each bit, we will construct a Schnorr-type ring signature showing that the bit

commitment is valid and the same value in each group.

This method was originally proposed publicly by Andrew Poelstra.

2 Algorithm

2.1 Prover

Given an integer 0 ≤ x < p, express in bits:

x =

n−1∑
i=0

bi2
i

Note that because of the equivalence discussed above, each bi may be considered as an element of either Zp

or Zq as needed, leading to a representation of x in each group. For each i ∈ [0, n − 2], generate random

blinders ri ∈ Zp and si ∈ Zq. For i = n− 1, set blinders

rn−1 = (2n−1)−1
n−2∑
i=0

ri2
i ∈ Zp
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and

sn−1 = (2n−1)−1
n−2∑
i=0

si2
i ∈ Zq

to ensure that
∑n−1

i=0 ri2
i =

∑n−1
i=1 si2

i = 0.

For each i ∈ [0, n− 1], use the blinders to compute two Pedersen commitments:

CG
i := biG

′ + riG ∈ G

CH
i := biH

′ + siH ∈ H

Because of this construction, the weighted commitment sums are
∑n−1

i=0 2iCG
i = xG′ and

∑n−1
i=0 2iCH

i = xH ′

in their respective groups.

We next construct a ring signature on each bit to show it is either 0 or 1, and that the value is the same

(up to our equivalence) in both groups. Specifically, for each i ∈ [0, n− 1], we consider two cases:

Case: bi = 0. Choose random ji ∈ Zp and ki ∈ Zq. Set

eG1,i := HG
(
CG

i , CH
i , jiG, kiH

)
∈ Zp

eH1,i := HH
(
CG

i , CH
i , jiG, kiH

)
∈ Zq

and choose random a0,i ∈ Zp and b0,i ∈ Zq. Set

eG0,i := HG
(
CG

i , CH
i , a0,iG− eG1,i(C

G
i −G′), b0,iH − eH1,i(C

H
i −H ′)

)
∈ Zp

eH0,i := HH
(
CG

i , CH
i , a0,iG− eG1,i(C

G
i −G′), b0,iH − eH1,i(C

H
i −H ′)

)
∈ Zq

and then define:

a1,i := ji + eG0,iri ∈ Zp

b1,i := ki + eH0,isi ∈ Zq

Case: bi = 1. Choose random ji ∈ Zp and ki ∈ Zq. Set

eG0,i := HG
(
CG

i , CH
i , jiG, kiH

)
∈ Zp

eH0,i := HH
(
CG

i , CH
i , jiG, kiH

)
∈ Zq

and choose random a1,i ∈ Zp and b1,i ∈ Zq. Set

eG1,i := HG
(
CG

i , CH
i , a1,iG− eG0,iC

G
i , b1,iH − eH0,iC

H
i

)
∈ Zp

eH1,i := HH
(
CG

i , CH
i , a1,iG− eG0,iC

G
i , b1,iH − eH0,iC

H
i

)
∈ Zq

and then define:

a0,i := ji + eG1,iri ∈ Zp

b0,i := ki + eH1,isi ∈ Zq

The proof is the tuple
(
xG′, xH ′, {CG

i }, {CH
i }, {eG0,i}, {eH0,i}, {a0,i}, {a1,i}, {b0,i}, {b1,i}

)
.

2



2.2 Verifier

Given a proof tuple, we first ensure the bit commitments faithfully represent the discrete logarithm commit-

ments by checking that the following equations hold:

n−1∑
i=0

2iCG
i = xG′ ∈ G

n−1∑
i=0

2iCH
i = xH ′ ∈ H

For each i ∈ [0, n− 1], compute the following:

eG1,i := HG
(
CG

i , CH
i , a1,iG− eG0,iC

G
i , b1,iH − eH0,iC

H
i

)
∈ Zp

eH1,i := HH
(
CG

i , CH
i , a1,iG− eG0,iC

G
i , b1,iH − eH0,iC

H
i

)
∈ Zq

(eG0,i)
′ := HG

(
CG

i , CH
i , a0,iG− eG1,i(C

G
i −G′), b0,iH − eH1,i(C

H
i −H ′)

)
∈ Zp

(eH0,i)
′ := HH

(
CG

i , CH
i , a0,iG− eG1,i(C

G
i −G′), b0,iH − eH1,i(C

H
i −H ′)

)
∈ Zq

Check that (eG0,i)
′ = eG0,i and (eH0,i)

′ = eH0,i from the proof tuple.

If all of these checks are successful, the verifier accepts the proof. Otherwise, it rejects the proof. The

verifier is assumed to have also checked each proof tuple element to ensure it belongs to the expected group,

to account for a malicious prover.
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